
JCWRNAL OF COMPUTATIONAL PHYSICS 2, 1 Id-1 19 (1967) 

A General Corrective Procedure for the Numerical Solution 
of Initial-Value Problem9 

C. W. HIRT AND FRANCIS H. HARLOW 

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544 

In many circumstances the finite difference equations used in the solution of an initial- 
value problem must be solved by an iteration process at each time step. This paper 
proposes a technique that permits crude iteration to be used without leading to a 
disastrous accumulation of error after many cycles of time advancement. The technique, 
which is quite general, is discussed for two examples. The second of these applications 
accounts for the success of the Marker-and-Cell computing method for the solution 
of incompressible fluid flow problems. 

In the finite difference solution of an initial-value problem, the dependent 
variable configuration is advanced in time through a sequence of small steps of 
duration 6t. In many circumstances the finite difference equations used for ad- 
vancing the solution through one time step must be solved by an iteration or 
relaxation process. This occurs, for example, when the difference equations are 
nonlinear, or are sets of coupled linear equations. The use of an iterative procedure 
always introduces some error. To avoid a significant accumulation of this error, 
when a solution is carried through many time cycles, it is generally thought 
necessary to use a very fine convergence criterion for the iteration process. Usually, 
the required computing time increases rapidly with an increase in the fineness of 
the convergence criterion, and this often means prohibitive computing time to 
obtain a desired level of accuracy. 

In this paper we propose a technique that permits the use of a coarse con- 
vergence criterion by prohibiting the usual accumulation of error. This technique, 
which is quite general, is adapted from a procedure proposed by Harlow and 
Welch [I] for a special case. The main purpose of this corrective technique is to 
save computing time. The technique significantly reduces the number of iterative 
subcycles that are required to preserve accuracy through a large number of time- 
advancement cycles. 

X This work was performed under the auspices of the United States Atomic Energy Commission. 
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We first illustrate the basic idea by a simple example. The initial value problem 

(d/dt)(z + 25) + 2t(l + 5Z4) = 0, (1) 

with Z = 1 at t = 0 has the exact solution 

z = 1 - P. (2) 

To obtain a finite difference solution of (1) the following approximation could 
be used. 

[z”+l + (Zn+y] - [Z” + (Zy + 2&(n&)[l + yz9y = 0 

zo= 1, (3) 

where Zn means the value of Z at time step n. For each cycle a non-linear 
equation must be solved for Zn+l. This could be accomplished, for example, by 
iterating with a Newton-Raphson method [2]. 

If Eq. (3) is not iterated finely enough at each time step, it is possible for a 
significant error to develop after many cycles of calculation. To eliminate such 
an accumulation of error we propose that Eq. (1) be replaced by the equivaient 
set of equations, 

dD 
- d (Z + 25) + 2t(1 + 5Z4), dt - dt 

D = 0, 
(4) 

which has the finite difference approximation 

Dn+l = Dn + [P+l + (Zn+1)5] - [Z” + (Zn)5] + 26t(n&)[l + 5(Zn)4], (5) 

and 
Dfl+l = 0. (6) 

According to Eq. (6) we should solve Eq. (5) for a value of Zn+l that makes 
the right-hand side of that equation equal to zero. A solution of this nonlinear 
equation for Z M can be obtained by an iteration process. An iteration process, 
however, is usually terminated with some error, so that Dn+l, as defined by Eq. (5), 
can differ from zero by an amount that depends on the convergence criterion for 
Zn+l. In the next cycle of calculation, step n + 2, this residual Dn+l is used for 
the value of Dn on the right-hand side of Eq. (5). In this way a correction is intro- 
duced at step n + 2 for the error made in Z n+l. It is this corrective term that allows 
Eq. (5) to be solved for each Zn with a relatively coarse convergence criterion 
without the usual accumulation of error as n increases. 

To demonstrate the effect of the correction term we have calculated with 
Eqs. (3) and (5) for 100 cycles, with St = 0.01, The equations were solved by 
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a Newton-Raphson iteration technique using the convergence criterion: the 
magnitude of the change in Z”+l after an iteration had to be less than a specified 
constant E. Three sets of calculations were performed, E = 1.0, E = 0.1, and 
E = 0.01. Figure 1 shows the results for E = 1 .O and E = 0.1. In the E = 0.01 case 
the corrected and uncorrected solutions agreed with the exact solution to within 0.1. 
The corrective procedure improved the approximate solutions in every case. 
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FIG. 1. The results for 100 cycles as obtained from Eq. (3), without correction, and Eq. (5), 
with correction, are compared with exact solution. Solid lines had a convergence criterion of 1 .O, 
and dashed lines had a convergence criterion of 0.1. 

Specifically, the corrected results obtained with convergence criterion 1.0 (0.1) 
are at least as accurate as the uncorrected results obtained with convergence 
criterion 0.1 (0.01). 

Another example that illustrates this corrective procedure occurs in the Marker- 
and-Cell method [l]. This is a computing technique for solving the Navier-Stokes 
equations that describe the transient dynamics of an incompressible fluid. The 
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condition of incompressibility is that the divergence of the fluid velocity, u, must 
vanish, 

V*u=Q. (7) 

The fluid pressure, p, must satisfy an equation that is derived by taking the 
divergence of the momentum equation (Navier-Stokes equation). Retaining all 
of the terms, we obtain 

4 (V au) = -W(p/p) + vvyv * u) - Q (8) 

where 
Q = V *  [V l (uu) ] ,  

p is the fluid density (a constant), and v is the kinematic viscosity. 

(9 

The incompressibility condition, Eq. (7), implies that Eq. (8) is a Poisson 
equation for the pressure. This equation must be solved at each step in the time 
advancement of a problem. A Poisson equation in finite difference form is most 
efficiently solved by an iteration process. Since an iteration process must be 
terminated after a finite number of iterations, some error is always introduced. 
Although the error introduced in one time cycle may be small, it can accumulate 
over many time cycles. This error corresponds to an error in the total volume of 
fluid, so it must remain small for the numerical solutions of the Navier-Stokes 
equations to be accurate. There are two ways to limit the accumulation of iteration 
errors. The iteration process can be carried to a high level of accuracy at each 
time cycle, or the self-correcting procedure that we are proposing can be used 
for a cycle-to-cycle adjustment. The latter method is preferred because it shortens 
computing time. In fact, it was in the Marker-and-Cell method that this corrective 
procedure was first described. If we define for each cell of the computing mesh 
the quantity 

D=V*u, (10) 

then Eqs. (7) and (8), for each cell, have a form similar to Eq. (4); the quantity 
that should be zero is instead set equal to aDjat, and the auxiliary equation D = 0 
is imposed. 

The advantage gained in using this procedure in the Marker-and-Cell method 
is described in Ref. [3], p, 22. The corrective term cuts down the accumulation of 
incompressibility errors, even with a coarse pressure iteration. Thus, with relatively 
little computing time, an accuracy is achieved that would otherwise be possible 
only at the expense of many more iterative subcycles of the pressure equation, 
requiring as much as three or four times more computer time. 
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The corrective procedure described by the preceding two examples can be 
considerably generalized. Consider the matrix of equations 

Eg+.=o, (11) 

in which Z is a set of unknown quantities, and @ is a matrix of specified functions 
of 2. The term r represents a matrix of functions of the Z quantities, of various 
independent variables (for example, spatial variables), and of derivatives of Z with 
respect to these independent variables. 

A finite difference approximation to Eq. (11) is 

@(z-l) - @(z*) + Bt r” = 0, (12) 

in which the derivatives of Z occurring in r are also approximated by finite 
differences. The index n counts time cycles, i.e., r = n&. Some or all of the Z 
in P may also carry the index n + 1. In any case Eq. (12) is a (coupled) set of 
algebraic equations for the unknown quantities Zn+l. If this set can be solved 
exactly, by efficient techniques, then the considerations of this paper do not apply. 
If an approximate solution is to be acquired through iteration, then our proposal 
eases the convergence criteria without introducing a loss of accuracy that could 
accumulate through many cycles of time advancement. We replace Eq. (11) by 
the equivalent pair of equations 

80 @Cz) + r 
at= at 

D = 0, 
(13) 

which, become, in finite difference form, 

Dn+l = D” + @(Z”+l) - @(Zn) + 8tr” 

Dn+l = 0. 
(14) 

Thus, in each cycle one solves, with relatively coarse convergence criteria, the 
matrix of equations 

in which 

D” + @(Z”+l) - @(Z”) + 6t P = 0, (15) 

Dn = D+‘-1 + @(Zn) - @(Zn-l) + 6t P-? (16) 

The result is an efficient calculation with significantly less than the usual accumula- 
tion of error. 
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